Nonlinear estimation of geometric parameters in FEMs of volcano deformation: Integrating tomography models and geodetic data for Okmok volcano, Alaska
نویسندگان
چکیده
[1] The internal structure, loading processes, and effective boundary conditions of a volcano control the deformation observed at the Earth’s surface. Using finite element models (FEMs), we simulate the response due to a pressurized magma chamber embedded in a domain having a distribution of elastic material properties. We present the Pinned Mesh Perturbation method (PMP) to automate the mesh generation process in response to perturbations of the position of a simulated magma chamber within an FEM domain. Using InSAR-observed deformation for the 1997 eruption of Okmok volcano, Alaska, as an example, we combine PMP with nested Monte Carlo methods to estimate a set of linear and nonlinear parameters that characterize the depressurization and location of the magma chamber beneath Okmok’s caldera. The three-dimensional FEMs used in the PMP method simulate the distribution of material properties of tomography models and account for the irregular geometry of the topography and bathymetry. The estimated depth of an assumed spherical magma chamber is 3527 54 +55 m below sea level and is sensitive to the distribution of material properties. This depth is consistent with lithostatic pressure constraints and very long period tremor observations. The fit of this FEM to the InSAR data is a significant improvement, at the 95% confidence level, compared to the fit of a corresponding FEM having homogeneous material properties. The methods presented here allow us to construct deformation models that integrate tomography models with geodetic observations, in an effort to achieve a deeper understanding of active volcanoes.
منابع مشابه
Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS, and interferometric synthetic aperture radar
[1] Volcano deformation is usually measured using satellite geodetic techniques including interferometric synthetic aperture radar (InSAR), campaign GPS, and continuous GPS. Differences in the spatial and temporal sampling of each system mean that most appropriate inversion scheme to determine the source parameters from each data set is different. Most studies either compare results from indepe...
متن کاملInterferometric Synthetic Aperture Radar Studies of Alaska Volcanoes
Interferometric synthetic aperture radar (InSAR) imaging is a recently developed geodetic technique capable of measuring ground-surface deformation with centimeter to subcentimeter vertical precision and spatial resolution of tens-of-meter over a relatively large region (~10 km). The spatial distribution of surface deformation data, derived from InSAR images, enables the construction of detaile...
متن کاملEstimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: the 1997 eruption of Okmok volcano, Alaska
Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transfo...
متن کاملStudies of Volcanoes of Alaska by Satellite Radar Interferometry
Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes....
متن کاملLava volume from the 1997 Eruption of Okmok volcano, Alaska, estimated using spaceborne and airborne interferometric synthetic aperture radar
Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of eruption at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the eruption. The pre-eruption DEM is generated using TOPSAR data where a three-dimensional multiaffined transformation is used to account for the misalignments...
متن کامل